

Low temperature air source heat pump module unit

Operation and Installation Manual

Standards for products: GB/T 25127.1-2010 GB/T 25127.2-2010

Applicable model: CAM-E350C-3F CAM-E750C-3F CAM-E1550C-3F

Please read this Manual carefully before use, and keep it properly for your convenience. In order to protect your legitimate rights and interests, please install it by professionals. Dear users:

Thank you for choosing our air conditioner!

This Manual is the general version of low temperature air source heat pump module unit of our company. The appearance of the air conditioner you choose may not be consistent with that described in this Manual, but it does not affect your operation and use.

Please read this Manual carefully before use, and keep it properly for your convenience. What you are using is water system products, which need to be cleaned and maintained on regular basis. If your air conditioner is not properly cleaned and maintained, its failure rate will be increased and its service life will be greatly reduced; at the same time, in-depth cleaning can remove the accumulated dust inside the air conditioner, effectively improve indoor air quality, and reduce the power consumption of the air conditioning system.

In order to protect your legitimate rights and interests, please install it by professionals.

When the unit is out of service if the ambient temperature is below 2°C, please drain the water in the water system of the unit before cutting off the power supply. Please contact the local air conditioning product management center one month before cooling in summer and heating in winter. We will assign professional personnel to carry out paid inspection, water drainage, water filling, debugging, cleaning and maintenance services. Just in case, it will bring inconvenience to your life and work because of the air conditioner fault.

Table of Contents

Notice to	Users		1
Unit Intro	duction		
Introducti	on of Wire C	Controller	
Unit Insta	llation		
Arrangen	nent of Water	Pipes	
Electrical	Connection.		
Test Rum	ning		
Care and	Maintenance		
Technical	Parameters		
Annex:	Trial Operat	tion and Maintenance	Record
	Daily Opera	tion Record	
	Figure (I):	CAM-E350C-3F	(EVI) wiring nameplate;
	Figure (II):	CAM-E750C-3F	(EVI) wiring nameplate;
	Figure (III):	CAM-E1550C-3F	(EVI) wiring nameplate;
	Figure (V): S	Schematic diagram of 1	network communication between the host and the
	S	slave;	

Parts Purchased from Local Source Names and Contents of Hazardous Substances in the Product

Notice to Users:

Warning

Please entrust a dealer or a professional for installation.

The installation personnel must have relevant professional knowledge. If the user installs it by itself, the wrong operation will lead to fire, electric shock, injury, water leakage, etc.

- If you need to purchase from the local source, you must use the products specified by our company.
- The use of products other than those specified may lead to fire, electric shock, water leakage, etc. So please entrust professional personnel to install the retail items.
- The regulations of local electric company shall be observed while connecting the power.
- According to the law, reliable grounding engineering must be carried out. If the grounding is not perfect, electric shock might be caused.

When the module unit needs to be moved or reinstalled, please entrust the dealer or professional personnel to operate.

- Improper installation will lead to accidents like fire, electric shock, injury, water leakage, etc. The self refurbishment and repair is strictly forbidden.
- Improper repair will lead to fire, electric shock, injury, water leakage and other accidents. The dealer or professional personnel shall be entrusted for repair.

Attention

• Confirm whether leakage protection switch is installed.

Leakage protection switch must be installed, if not, the person might get electric shock.

• Connect the cable correctly.

If the cable is connected in the wrong way, the electrical components may be damaged.

• The unit shall not be operated near combustibles (paint, coating, gasoline, chemical agent, etc.) to prevent fire or explosion.

If there is an outbreak of fire, turn off the main power supply immediately and put out the fire with fire extinguisher.

- Do not touch the refrigerant exhaust parts with hands to prevent scalding.
- Please maintain the unit on regular basis according to the requirements of this Manual to ensure running in good condition.
- In case of leakage of refrigerant or chilled water (cooling water), all switches shall be turned off immediately. If the unit cannot be shut down through the controller switch, the main power supply must be turned off to make it stop.
- Please use the fuse with specified capacity. No iron wire or copper wire shall be used. Otherwise, the unit will be seriously damaged or fire will occur.

Unit Introduction

I. Name and function of main components of the unit

1) Schematic diagram of 35 kW module unit

Figure 1

2) Schematic diagram of 75 kW module unit

Figure 2

3) Schematic diagram of 155 kW (EVI) module unit

Figure 3

Table 1 Product parts and components

Item No.	1	2	3	4	5	6	7
Name	Top cover	Condenser	Water inlet	Shell and tube evaporator	Compressor	Water outlet	Electric control box

Note: All the illustrations in this Manual are for the purpose of explanation only. Its appearance and function may not be completely consistent with that of the air conditioner you purchased. Please refer to the actual model.

II. Performance features of the unit

The air-cooled heat pump module unit is composed of one or more modules, each of which has its own independent electronic control unit. The electronic control units of each module are connected by communication network for information exchange. The air-cooled heat pump module unit is compact in structure, easy for transportation and hoisting. At the same time, it saves the cooling tower, cooling water pump and other facilities for users and reduces the installation cost.

The air-cooled heat pump module unit of our company provides chilled water or hot water for the centralized air handling equipment or terminal equipment for central air-conditioning project. The unit is a completely independent self-contained unit. It is designed to be installed outdoors (roof or ground) and each unit includes the main components such as high efficiency and low noise scroll compressor, air cooled condenser, shell and tube type (or plate type or tube type) evaporator and microcomputer control center, all of which are installed on the steel structure base, which is solid and durable.

This unit adopts Chinese microcomputer controlling systems, which can automatically control the energy according to the load to achieve the best matching and truly realize the best energy-saving operation. This product is a modular unit, with a maximum of 32 modules in parallel, and users can make independent combination according to their needs. It can be widely used in air conditioning projects of new and rebuilt industrial and civil buildings, such as guesthouses, hotels, apartments, office buildings, hospitals and industrial factory buildings. Especially for the occasion with high requirements for noise and surrounding environment and occasion of water deficiency, air-cooled heat pump module unit is the best choice.

III. Overall dimension of the unit

1) Outline dimension drawing (unit: mm)

(A) Applicable for 35 kW model

(B) Applicable for 75 kW model

(D) Applicable for 155 kW (EVI) model

Table 2 Unit outline dimension and parameters

Model	А	В	С	D	Е	F	G	Н
35	1,160	1,920	900	120		426	840	850
75	2,000	1,920	900	1,420	346	538	1,586	850
155	2,200	2,280	1,100	1,390	458	539	1,724	1,054

on Installing the spring shock absorber will increase the total height of the unit by approximately 135 mm.

IV. Operating conditions of the unit

- 1) The power supply voltage standard is 380 V 3N~50 Hz, the minimum allowable voltage is 342 V, and the maximum allowable voltage is 418 V.
- 2) In order to maintain good performance, please operate the unit under the following outdoor temperature:

Model	Operating range for cooling	Operating range for heating
35	5°C to 46°C	
75	5°C to 46°C	-30°C to 45°C
155	10°C to 43°C	

Tak	le	3	\mathbf{O}	neratin	n	range
1 at	ле	3	U	perating	g.	range

3) The unit is in return water temperature control mode:

Model	Setting temperature of cooling	Setting temperature of heating	Setting temperature in default after power on
35			
75	9°C to 25°C	20°C to 55°C	12°C
155			

Table 4 Return water temperature control mode

If low temperature return water unit is needed, special customization is needed.

Attention

If the user needs the return water temperature of the unit to be lower than the above minimum setting value, please make sure to ask the dealer or management center of our company for central air conditioning product, and take necessary guarantee measures before use.

Introduction of Wire Controller

I: Overview of wire controller

1. The basic conditions of using the controller by wire

- 1) Applicable scope of power supply voltage: The power supply voltage is AC220 v±10%. The power adapter (AC220 V/DC12 V) will supply the power to the wire controller.
- 2) Working environment temperature of wire controller: -15°C to +43°C
- 3) Working environment humidity of wire controller: RH40% to RH90%
- 4) Electric control safety complies with: GB4706.32-2012 and GB/T7725-2004
- 2. Overview of the function

The main functions of the wire controller are as follows:

- 1) It is connected with outdoor unit through P, Q and E terminals; it is connected with the upper computer through A, B and E;
- 2) Set the working mode by key operation;
- 3) LCD display function;
- 4) Timing switch function;
- 5) Optional memory function for power failure;

3. Installation method:

When installing and connecting the wire controller, connect the wire controller with P, Q and E on the host. At the same time, use the power adapter in the accessory to connect with the black plug at the lower end of the wire controller.

The communication line is twisted pair 2x(0.75-1.0)mm Shielded wire P,Q,E ("E" is the shield connect) (When the unit is far away from the wired controller, 120 matching resistor may be connected with P and Q at the side of main board in parallel.)

(The max length 50m)

Please refer to the *Operation and Installation Manual of the Wire Controller* for the LCD display contents and key instructions of the wire controller

00#

IV. Overview of mainboard function

Address DIP switch description

Dialing add address settin (black in	ress to OFF at the same time, and g range of the model is 00 # to 15 # dicates two digit dialing entity)	Dialing ac address sett (black in	dress to ON at the same time, and ing range of the model is 16# to 31# ndicates two digit dialing entity)	
CE012		C-1033		
SR1	Description	SR1	Description	
0	Host (00# module unit)	0	Slave (16# module unit)	
1	Slave (01# module unit)	1	Slave (17# module unit)	
2	Slave (02# module unit)	2	Slave (18# module unit)	
3	Slave (03# module unit)	3	Slave (19# module unit)	
4	Slave (04# module unit)	4	Slave (20# module unit)	
5	Slave (05# module unit)	5	Slave (21# module unit)	
6	Slave (06# module unit)	6	Slave (22# module unit)	
7	Slave (07# module unit)	7	Slave (23# module unit)	

8	Slave (08# module unit)	8	Slave (24# module unit)
9	Slave (09# module unit)	9	Slave (25# module unit)
А	Slave (10# module unit)	А	Slave (26# module unit)
В	Slave (11# module unit)	В	Slave (27# module unit)
С	Slave (12# module unit)	С	Slave (28# module unit)
D	Slave (13# module unit)	D	Slave (29# module unit)
Е	Slave (14# module unit)	Е	Slave (30# module unit)
F	Slave (15# module unit)	F	Slave (31# module unit)

V. Description of DIP switch (detect only once for power on)

VI. Protection function (See "Care and Maintenance" for detailed code)

1). Power supply protection

Three phase electrical fault and missing phase detection (judge only once for power on).

When the host is under power protection, stop all units; in case of power supply protection of the slave, stop the corresponding units.

2). Pump overload protection

When the water pump overload protection is detected, stop all units.

3). Insufficient water flow protection

30 seconds after the start of the water pump, it will start to detect the lack of water flow; when the switch is continuously disconnected for 15 seconds, the alarm "insufficient air conditioning water flow" will be given. The host stops the water pump, stops the whole unit, then starts the water pump, automatically recovers, and the slave stops the module, and automatically recovers.

Each module shall be detected. When the main module gives an alarm of insufficient water flow, all units will be stopped; when the slave module detects the alarm of insufficient water flow, the slave module will be stopped.

4). Protection against excessive water temperature difference between inlet and outlet

The normal water flow rate of the unit = refrigerating capacity * 0.172m3/h, and the difference between the outlet water temperature T2 and the total inlet water TBS of the unit is 5°C. If the actual water flow of the unit is too small, the temperature difference $\triangle T$ between T2 and TB is greater than 5°C. When $\triangle T$ is greater than or equal to 10°C, the unit will report excessive water temperature for protection.

5). Compressor operation protection

When the compressor starts again, it will delay 180 seconds.

6). Communication fault

When the communication failure between the main board and the wire controller lasts for two minutes, the party who cannot communicate will alarm L4 "communication fault between the host and the wire controller", and stop the operation of all units until the communication between the main board and the wire controller can be connected, and then the power on will be automatically resumed.

When the communication fault between the main board and the slave lasts for two minutes, the slave will alarm L1 "communication fault between modules", and stop the operation of the slave that cannot communicate.

When the main board detects that the number of connected units is reduced, it will alarm L2 "the number of modules is reduced", and the slave that loses communication with the host will stop running.

When the main board detects that the maximum number of addresses is greater than or equal to the number of connected units, the unit can control and operate normally, but alarm L3 "address error" will be given.

7). High pressure/overload protection

During the operation of the compressor, it is detected that the "high pressure/overload" switch of the compressor is continuously disconnected for 3 seconds;

For defrosting system, stop the corresponding compressor; in other cases, the alarm "high pressure/overload" will be given and the corresponding system will be shut down (the fan shall follow the principle of simultaneous start and stop).

8). Low pressure protection

60 seconds after the compressor starts, start to detect the "compressor low pressure" switch, when the switch disconnection continues for a period of time;

If the compressor is defrosting, no alarm will be given; after defrosting, the low pressure switch will be redetected after 60 seconds delay;

If the compressor is not defrosting, the alarm "compressor low pressure" will be sent and the

corresponding system will shutdown.

Determine the duration of low-pressure switch disconnection when the low pressure alarm occurs:

Alarm will be sent if it is disconnected for 5 seconds during cooling;

Alarm will be sent if it is disconnected for 30 seconds during heating;

9). Protection of fin over-temperature

When the unit is powered on, the temperature of fins is detected under cooling mode and if there is no fault of fin temperature probe:

When fin temperature > 65°C, the alarm for fin over-temperature will be sent;

When fin temperature $\leq 55^{\circ}$ C, the protection of fin over-temperature will exit.

When the fin temperature is too high, stop the corresponding systems (the fan follows the principle of simultaneous start and stop);

It took 3 seconds for the chaterring before alarm.

10). Module outlet water temperature protection

After the module is selected to run for the first time, it will start to detect:

The alarm will be sent for the subcooling of the corresponding module outlet water under cooling mode and when the outlet water temperature of the module $T2 \le 4^{\circ}C$;

When outlet water temperature $T2 \ge 7^{\circ}C$, the outlet water supercooling protection of the module will exit. The work of the corresponding module will stop in case of subcooling (superheat) protection. It is allowed the module to work again automatically after reset, and give an alarm after 3 seconds to eliminate the chattering.

In the heating mode, when the outlet water temperature of the module is more than or equal to Copeland 63°C (Danfoss 68°C), the alarm for superheat of the module outlet water will be sent;

When the outlet water temperature of the module is less than (Copeland 52°C and Danfoss 57°C), the module outlet water superheat protection will exit;

In case of subcooling (superheat) protection, the corresponding module will be stopped. It is allowed to start the module again automatically after resetting; After 3 seconds, the alarm will be given;

11). Current protection

I: measured current;

IP: compressor protection current is set to 34A (3 5kWEVI, 75 kWEVI set to 62A (155 kW EVI);

When the measured current I of a system is greater than or equal to the protection current IP, stop the corresponding systems (the fan follows the principle of simultaneous start and stop). The alarm of too high current will be sent for protection.

12). Exhaust temperature protection

1. The unit has temperature control switch and high pressure switch in series (alarm P2 and P8);

2. High temperature protection of TP temperature sensor (F6 and F7 alarm from main control board and PF alarm from wire controller).

13). Fan overload protection

P5 and PB: when the fan overload occurs during the operation of the unit, the unit will stop running until the fault is eliminated to avoid running in the state without fan and damaging the unit. The unit will start for normal operation after the fan is restored to normal operation.

14). Remote switch control function

Remote control switch controls the unit start-up and stop of the system unit in priority. When the remote switch interface of the system host is closed, the system runs under the control of the online controller; when the remote control interface is disconnected, the system stops working. The anti-freezing operation of the system is not controlled by the remote switch.

15). Shell and tube anti-icing protection

It works only in cooling mode. When the temperature detected by the shell and tube anti-icing sensor for 10 seconds is TC < 4°C, PE alarm will be sent (protection for anti-icing temperature too low and it is different from the fault code of the unit outlet water). Then stop the two systems of this board; when the anti-icing temperature \geq 7°C, the fault will be eliminated and the refrigerant system will be put into operation again.

VII. Main board spot check function

1. Applicable model: 35kW EVI 75kW EVI

Contents normally displayed by nixie tube:

1). The number of connected units (number of electric control boards) will be displayed in standby mode.

Before starting up, the compressor will display 0 before starting up;

After power on, the compressor opening percentage of the module will be displayed (50 means 1 compressor and 100 means 2 compressors).

2). After the system is started, the number of units started will be displayed.

The key of spot check is set on the outdoor system chip to observe the operation status of the outdoor system through spot check, so that the engineering and technical personnel can make the maintenance. Contents displayed by specific spot check:

	Contents	of spot check
Sr. No.	Contents of the unit spot check	Remarks
1	Address of main board	031
2	Capacity of this machine	35 KW/75 KW/155 KW
3	Operation mode of this machine	1-Cooling, 2-Heating, 4-Hot water, 8-standby
4	Number of outdoor unit	1-32 units
5	T1 Total outlet water temperature	
6	T2 Unit outlet water temperature	
7	T4 Environment temperature	
8	TB Total return water temperature	
9	TC Shell and tube anti-icing temperature	
10	T3A Condenser outlet temperature	
11	T3B Condenser inlet temperature	
12	T5A Evaporator inlet temperature	
13	T5B Evaporator inlet temperature	
14	THA Compressor return air temperature	
15	THB Compressor return air temperature	
16	T6A injection bypass inlet temperature	
17	T6B injection bypass inlet temperature	
18	T7A injection bypass outlet temperature	
19	T7B injection bypass outlet temperature	

20	TPA Compressor exhaust temperature	
21	TPB Compressor exhaust temperature	
22	A Compressor current value	
23	B Compressor current value	
24	Opening of main circuit electronic expansion valve A1	The actual opening is the query value*8
25	Opening of auxiliary circuit electronic expansion valve A2	The actual opening is the query value*8
26	Opening of main circuit electronic expansion valve B1	The actual opening is the query value*8
27	Opening of auxiliary circuit electronic expansion valve B2	The actual opening is the query value*8
28	Number of started units	Number of started compressor
29	Previous protection/ fault	No fault displayed E-/P-/L-/F-
30	Running time of compressor A	Spot check parameter ×100 hours
31	Running time of compressor B	Spot check parameter ×100 hours
32	Compressor type	"PP1" stands for Copeland compressor (black) "PP2" stands for Danfoss compressor (blue)
33		Exit spot check after display ""

2. Applicable model:

155 kE EVI

Contents normally displayed by nixie tube:

1). Display the number of connected units (number of electric control boards) in the standby mode.

Before starting up, the compressor will display 0 before starting up;

After power on, the compressor opening percentage of the module will be displayed (50 means 1 compressor and 100 means 2 compressors).

2). After the system is started, the number of units started will be displayed.

The key of spot check is set on the outdoor system chip to observe the operation status of the outdoor system through spot check, so that the engineering and technical personnel can make the maintenance. Contents displayed by specific spot check:

	Contents of spot check				
Sr. No.	Contents of the unit spot check	Remarks			
1	Address of main board	031			
2	Capacity of this machine	75 KW/155 KW			
3	Operation mode of this machine	1-Cooling, 2-Heating, 4-Hot water, 8-standby			
4	Number of outdoor unit	1-32 units			
5	T1 Total outlet water temperature				
6	Outlet water temperature of T2				
7	T4 Environment temperature				
8	TB Total return water temperature				
9	TC Shell and tube anti-icing temperature				

10	T3A Condenser outlet temperature	
11	T3B Condenser inlet temperature	
12	Reserved	
13	Reserved	
14	THA Compressor return air temperature	
15	THB Compressor return air temperature	
16	T6A injection bypass inlet temperature	
17	T6B injection bypass inlet temperature	
18	T7A injection bypass outlet temperature	
19	T7B injection bypass outlet temperature	
20	TPA Compressor exhaust temperature	
21	TPB Compressor exhaust temperature	
22	A compressor current value IA	
23	B compressor current value IB	
24	Opening of main circuit electronic expansion valve A1	The actual opening is the query value*8
25	Opening of auxiliary circuit electronic expansion valve A2	The actual opening is the query value*8
26	Opening of main circuit electronic expansion valve B1	The actual opening is the query value*8
27	Opening of auxiliary circuit electronic expansion valve B2	The actual opening is the query value*8
28	Number of started units	Number of started compressor
29	Previous protection/ fault	No fault displayed E-/P-/L-/F-
30	Running time of compressor A	Spot check parameter ×100 hours
31	Running time of compressor B	Spot check parameter ×100 hours
32	Compressor type	"PP1" stands for Copeland compressor (black)
33		Exit spot check after display ""

Unit Installation

Attention

- When the unit is installed in a new place or moved to another place, it must be installed by professional installation technicians. It is not allowed for users to install by themselves.
- If the user does not install the air conditioner as required, electric shock or fire will occur.
- The user shall have qualified power supply consistent with the nameplate of the unit.
- The power line shall be installed with protective devices such as leakage protector or air switch.
- Please use the fuse or circuit breaker specified in this Manual.
- Wiring work must be carried out by qualified electricians, and the electrical safety requirements must be complied with.
- The unit shall be ensured to be well grounded, that is, the main switch of the air conditioner must have a reliable grounding wire.
- The power cord replacement must be operated by the local professional of central air conditioning product management center of this company.

I. Handling of the unit

In the process of handling, the tilt angle of the unit shall not be greater than 15° to prevent the unit from overturning.

- 1) Rolling transportation: put several rollers of the same size under the base of the unit, each roller must be a little longer than the outer frame of the base, and suitable for the balance of the unit.
- 2) Hoisting: the strength of the lifting rope (belt) shall be 3 times greater than the weight of the unit. Check and ensure that the lifting hook is fastened to the unit, and the hoisting angle shall be greater than 60°. In order to prevent damage to the unit, wood blocks, cloth or hard paper with a thickness of at least 50 mm shall be added at the contact between the unit and the lifting rope. Do not stand under the unit when lifting.

Hoisting angle

Figure 1

II. Requirements for unit layout spacing

1. Requirements for unit layout spacing

- 1) In order to ensure enough air flow into the condenser, the influence of downdraft caused by tall buildings around the unit shall also be considered during installation.
- 2) If the unit is installed in a place with strong air flow, such as exposed roof, measures such as parapet or shutter can be considered to prevent turbulence from interfering with the air into the unit. If the unit needs to set a parapet, its height shall not exceed 1.5m; If the shutter is used, the total static pressure loss shall be less than the external static pressure of the fan. The distance between the unit and the parapet or shutter shall also meet the minimum distance requirement for unit installation.
- 3) If the unit needs to operate in winter and the installation site may be covered with snow, the unit shall be higher than the snow surface to ensure the smooth flow of air through the coil.
- 2. Diagram of unit arrangement spacing
 - 1) Diagram of recommended spacing of unit installation

Figure 2(a) Applicable for 35 kW module unit

Figure 2(b) Applicable for 75 kW module unit

Figure 2(c) Applicable for 155 kW module unit

Table 1 Parameters table for recommended spacing of unit installation

Installation spacing (mm)						
A B C D E						
>1,500	>1,500 >2,000 >2,000 >1,500 >8,000					

3) Parameters table for recommended spacing of unit installation

In order to prevent condenser exhaust backflow and avoid operation fault of the unit, when multi module units are installed in parallel, the installation mode shall be A and D directions in Figure 2, and the distance between units and obstacles shall be the same as Table 1; the distance between adjacent modules shall not be less than 600 mm, or modules can be installed in parallel according to B and C directions in Figure 2; the distance between units and obstacles shall be the same as Table 1, and the distance between adjacent modules shall not be less than 1,000 mm or according to A and D directions combining B and C directions; the distance between unit and obstacle is the same as table 1, and the distance between adjacent modules in A and D direction is not less than 600 mm, and that in B and c direction is not less than 1,000 mm. If the above spacing cannot be guaranteed, the air passing through the coil of the unit will be limited, or the exhaust backflow will occur, the performance of the unit may be affected, or the operation and shutdown fault may occur.

III. Installation foundation

- 1) The unit shall be placed on the horizontal foundation, ground floor or roof which can bear the operating weight of the whole set of equipment and the weight of maintenance personnel. Please refer to *Technical Parameters* for the operating weight.
- 2) If the position of the unit is too high for the maintenance personnel to repair, appropriate scaffolds can be erected around the unit.
- 3) The scaffold must be able to bear the weight of maintenance personnel and the equipment.
- 4) It is strictly forbidden to bury the underframe of the unit in the concrete of the installation foundation.

Location of unit installation foundation: (unit: mm)

Figure 3(a) Applicable for 35 kW unit

Figure 3(b) Applicable for 75 kW unit

Figure 3(c) Applicable for 155 kW unit

IV. Installation of vibration damper

A. Vibration damper must be installed between the unit and the foundation.

The unit can be fixed on the foundation through spring vibration damper by the mounting holes on the steel frame of the unit base with diameter of $\Phi 15$ mm. The center distance of installation hole is shown in Figure 3 (schematic diagram of unit installation dimension). No shock absorber is provided for this unit. Users can choose according to the relevant requirements. For the installation on the top of high-rise buildings or vibration sensitive areas, please consult us while selecting the shock absorber.

B. Installation steps for shock absorber:

- 1) Ensure that the flatness of concrete foundation is within ± 3 mm. Then place the unit on the cushion block.
- 2) Raise the unit to a suitable height for installing the shock absorbers.
- 3) Remove the fastening nut of the shock absorber.
- 4) Place the unit on the shock absorber so that the fixing bolt hole of the shock absorber can be aligned with the fixing hole on the base.
- 5) Reinstall the fastening nut of the shock absorber into the fixing hole on the base and screw it into the shock absorber.
- 6) While adjusting the working height of the shock absorber seat and screwing in the leveling bolts, the bolts must be tightened one circle along the peripheral sequence to make the adjusted deformation of the shock absorber height equal.
- 7) After the correct working height is reached, the lock nut can be tightened.

It is recommended that the shock absorber be fixed to the foundation by the holes provided. After the unit is located on the foundation, do not move the connected shock absorber, and do not tighten the central fixing nut before the shock absorber is loaded.

Arrangement of Water Pipes

I. Basic requirements for connection of chilled water pipes

Attention

- When the unit is installed in place, the chilled water pipes can be connected.
- The connection of water pipes shall comply with relevant installation regulations.
- There shall be no foreign matters in the pipes, and all chilled water pipes must comply with local pipeline engineering codes and regulations.

1. Connection requirements of chilled water pipes

- 1) Before the operation of the unit, all chilled water pipes shall be washed thoroughly to make them free of foreign matters. It shall be noted that the pipes shall be flushed separately, and the unit shall not be connected and flushed together to avoid flushing any foreign matters into or to the heat exchanger.
- 2) The water flow must enter the heat exchanger through the water inlet. If the direction of water flow through the heat exchanger is opposite, the performance of the unit will be worse.
- 3) The unit is equipped with a target flow switch to realize the cut-off protection of the unit. There must be horizontal straight pipe sections with diameter of 5 times at the direction of the target flow switch. The working pressure of the target flow switch controller is 1 MPa, and the interface is 1 inch (2.54 cm). Do not short circuit the target flow switch.Otherwise the heat exchanger of the unit may be seriously damaged.
- 4) The water pump installed in the water pipe system shall be equipped with starter and controlled by the unit. The water pump directly press the water into the heat exchanger of the water system.
- 5) Piping and pipe joints must be supported independently and shall not be supported on the unit.
- 6) The connecting pipe and pipe joint of heat exchanger shall be easy to be detached, and easy to be operated and cleaned. It shall be easy to check the evaporator interface pipe.
- 7) The evaporator shall be equipped with a filter with more than 40 mesh per inch on site, and the filter shall be installed as close to the water inlet interface as possible, and shall be insulated.
- 8) The heat exchanger by-pass pipe and by-pass valve as shown in Figure 5 must be installed to facilitate the cleaning of external water system before unit commissioning. During maintenance, the water path of heat exchanger can be cut off without disturbing other heat exchangers.
- 9) Flexible joint should be used between heat exchanger interface and field pipeline to reduce vibration transmission to buildings.
- 10) For the convenience of maintenance, thermometer or pressure gauge shall be installed on the inlet and outlet pipeline. No pressure and temperature instruments are supplied for this unit and the user need to purchase them by itself.
- 11) All low points of the water system shall be equipped with drainage interfaces, so that the water in the evaporator and the system can be completely discharged; vent valves shall be provided at all high points to remove air from the pipeline. The air discharge valve and water outlet are not insulated to facilitate maintenance.
- 12) All water pipes that may freeze in the system shall be insulated, including the connecting pipe and flange of heat exchanger.
- 13) The outdoor chilled water pipeline shall be wrapped with an auxiliary heating belt and insulated with PE, EDPM and other materials with a thickness of 20 mm to prevent the pipeline from freezing and cracking at low temperature. The power supply of heating belt shall be equipped with independent fuse.
- 14) When the ambient temperature is below 2°C and when the unit is out of service for a long time, please drain the water inside the unit and cut off the power supply of the unit. If the unit does not discharge water in winter, do not cut off the power supply of the unit. The fan coil in the water system must be installed with a three-way valve to ensure smooth circulation of the system after the

anti-freezing water pump is started in winter.

15) For on-line units, the total outlet water sensor corresponding to address unit 0 (main module) shall be moved to the main outlet pipe of the system waterway.

- The water pipe network including filter and heat exchanger will be seriously damaged by dregs.
- Installers and users must ensure the quality of chilled water, do not use salt anti-icing mixture, and do not allow air into the water system, because salt and air will cause oxidation and corrosion of steel parts inside the heat exchanger.
- 2. Schematic diagram of pipepline connection in the system

Figure 5(a) Applicable for 35 kW module unit

Figure 5(b) Applicable for 75 kW module unit

Figure 5(c) Applicable for 155 kW module unit

II. Control of water quality

1. Control of water quality

When industrial water is used for chilled water, scale is rarely produced, but when well water or river water is used, more settlements such as scale and sand will be produced. Therefore, the water that does not meet the water quality requirements must be filtered and softened with softened water equipment before flowing into the chilled water system. If sand and soil settles in the evaporator, they will block the flow of chilled water and cause freezing accident; if the hardness of chilled water is too high, it is easy to cause scale and corrosion in the equipment, so the water quality shall be analyzed before use, such as PH value, conductivity, chloride ion concentration, sulfur ion concentration, etc.

2. Water quality standards applicable to the unit

PH value	Total hardness	Electrical conductivity	Sulfur ion	Chloridion	Ammonia ion
7-8.5	<50ppm	<200μv/cm (25°C)	None	<50ppm	None
Sulfate ion	Silicon	Fe content	Sodium ion	Calcium ion	
<50ppm	<30 ppm	<0.3 ppm	No requirement	<50ppm	

III. Guidance for replacement, installation and debugging of damaged target flow controller

- 1. Please check the flow switch carefully before installation. The package shall be in good condition and the appearance shall be free of damage and deformation. If you have any questions, please contact the manufacturer.
- 2. For the target flow controller, it must be noted that the liquid flow direction in the pipeline must be consistent with the direction of the arrow on the controller. The wiring terminal shall be located for easy connection.
- 3. Please pay attention to the following items during installation and wiring:
 - 1) It is absolutely forbidden for the wrench to collide with the bottom plate of the flow switch, resulting in the deformation and failure of the flow switch.
 - 2) In order to avoid electric shock and damage to the equipment, cut off the power supply during wiring or debugging.
 - 3) It is absolutely forbidden to adjust other screws during wiring except the inching switch wiring terminal and grounding screw. It shall be noted that the inching switch wiring shall not be made with too much fore. Otherwise it will make the inching switch itself displacement to result in the failure of the flow switch.
 - 4) The special grounding screw must be used for grounding, and the installation screw cannot be disassembled at will. Otherwise the switch will be deformed and invalid.
 - 5) The flow switch has been set to the minimum flow value before leaving the factory. It is not allowed to set a lower than the factory setting. Otherwise the switch may become invalid. After installation, please check by pressing the lever of the flow switch several times. Once it is found there is no "clatter " sound when the lever returns, turn the adjusting screw clockwise until there is a "clatter" sound when the lever returns.
 - 6) The model of the target must be determined according to the rated flow of the unit, the diameter of the outlet pipe and the target adjustment range of the flow switch (please refer to the Manual), and the target must not contact with the inner wall of the pipe and other flow restrictors in the pipe. Otherwise the flow switch will not reset normally.
- 4. Determine whether the flow switch and the system connected with it operate normally according to the measured value of the flowmeter, that is, when the measured value of the flowmeter is less than 60% of the rated water flow of the unit, the target flow controller shall be disconnected, three working cycles shall be observed, and the shell of the flow switch shall be covered in time.

IV. Pipeline installation of single module water system

Schematic diagram of single module

Figure 7(c) Applicable for 155 kW model

V. Pipeline installation of multi module water system

Due to the special design of the unit itself, the installation of multi module combination is described as follows.

(I). Installation form of multi module combined water pipeline

- 1. Installation form of water pipes of 35 kW unit
 - 1) Installation method I (recommended method)

- 2. Installation form of water pipes of 75 kW unit
 - 1) Installation method I (recommended method)

2) Installation method II

Figure 11 (Installation mode B: no more than 32 modules)

Attention

1. Please add several vent holes at the high point of the main pipe, so that the air in the pipe can be discharged quickly and completely;

2. Once the unit is set up, it is forbidden to replace the parts in the system, such as water pump, without permission;

3. It is forbidden to connect the water system pipeline with the units outside the project plan, except that the permission from the dealer is obtained;

4. Before the pipeline is cleaned, do not fill water into the unit. Otherwise the evaporator and the unit may be damaged.

3. Installation form of water pipe for 155 kw unit

Figure 13 (Installation mode B: no more than 32 modules)

Attention

1. Please add several vent holes at the high point of the main pipe, so that the air in the pipe can be discharged quickly and completely;

2. Once the unit is set up, it is forbidden to replace the parts in the system, such as water pump, without permission;

3. It is forbidden to connect the water system pipeline with the units outside the project plan, except that

the permission from the dealer is obtained;

4. Before the pipeline is cleaned, do not fill water into the unit. Otherwise the evaporator and the unit may be damaged.

(II). Parameter table of main inlet and outlet pipe diameter

Table 2

Total refrigerating capacity of the unit (kW)	Total inlet and outlet pipe diameter (nominal diameter)	Total refrigerating capacity of the unit (kW)	Total inlet and outlet pipe diameter (nominal diameter)
35×1=35	DN40	65×8=520	
35×2=70		65×9=585	
35×3=105		65×10=650	
35×4=140		65×11=715	
35×5=175		75×7=525	DN125
65×1=65	DN65	75×8=600	
75×1=75		75×9=675	
65×2=130		75×10=750	
75×2=150		150×4=600	
150×1=150		150×5=750	
35×6=210		65×12=780	
35×7=245		65×13=845	DN150
65×3=195	DN80	65×14=905	
75×3=225		75×11=825	
35×8=280		75×12=900	DINISO
35×9=315		75×13=975	
35×10=350		75×14=1050	
35×11=385		150×6=900	
35×12=420		150×7=1050	
35×13=455		65×15=975	
65×4=260	DN100	65×16=1040	
65×5=325	DIVIOU	75×15=1125	
65×6=390		75×16=1200	
75×4=300		150×8=1200	DIN200
75×5=375		150×9=1350	
75×6=450		150×10=1500	
150×2=300]	150×11=1650	
150×3=450		150×12=1800	
35×14=490		150×13=1950	DN/250
35×15=525	DN125	150×14=2100	D1N230
35×16=560		$150 \times 15 = 2250$	

The water outlet size of 35 kw module unit is DN40;

The water outlet size of 75 kW, and 155 kw module units is DN65;

The height of water inlet and outlet interface of three models is different.

Electrical Connection

I. Electrical connection

- The air conditioner shall use special power supply, and the power supply voltage shall meet the rated voltage.
- Wiring construction must be carried out by professional technicians according to the wiring nameplate.
- Only the electrical components specified by our company can be used, and the installation and technical services shall be provided to the manufacturer or authorized dealer.

If the wiring fails to meet the electrical installation specifications, it may lead to controller failure or electric shock and other consequences.

- The connected fixed line must be equipped with an all pole breaking device with a contact opening distance of at least 3 mm.
- According to the requirements of the relevant national technical standard for electrical equipment, set up the leakage protection devices.
- After the completion of all wiring construction, the power supply can be connected only after careful inspection and confirmation of no mistake.
- Please read all kinds of labels on the electric control box carefully.
- Users are not allowed to repair by themselves. If the controller is not properly repaired, it may cause electric shock or damage to the controller. If you need any repair, please contact us by the central air conditioning service hotline.

Model		35 kW	75 kW	155 kW	
	Dhaga line	Section area (mm ²)	10	35	70
Р	Phase line	Number of pieces	3	3	3
Neutral Neutral Wire Ground wire	Neutral	Section area (mm ²)	10	35	70
	wire	Number of pieces	1	1	1
	Ground	Section area (mm ²)	10	35	70
	Number of pieces	1	1	1	

II. Specification of power supply

Note: the above electrical and specifications are subject to change without prior notice and all shall subject to the accessories.

III. Wiring requirements

- There is no need to add control elements (such as relay, etc.) in the electric control box, and it is not allowed the power supply and control circuit not connected with the electric control box to pass through the electric control box. Otherwise, electromagnetic interference may cause the unit and control device fault or even damage, and lead to protection failure.
- 2) All cables connected to the electric cabinet shall be supported independently instead of by the electric cabinet.
- 3) Generally, there are strong current circuits passing through the electric control box and 220 V AC power passing through the control panel. The principle of separating strong and weak current shall be followed during wiring. The distance between the power line and the control line shall be more than 100 mm.
- 4) The unit can only use 380 V3N/50 Hz rated power supply, and the maximum allowable voltage range is [342 v to 418 v].

- 5) All electrical wiring must comply with local wiring specifications. Proper cables shall be connected to the power terminal through the wiring hole at the bottom of the electric control box. According to the Chinese standard, the user has the responsibility to provide voltage and current protection for the input power supply of the unit. In order to prevent the wire body from loosening, please make the wiring by terminals without opening.
- 6) All power supply connected to the unit must pass through a manual switch to ensure that when the switch is disconnected, the voltage on all circuit nodes of the unit can be released.
- 7) The correct size of cable must be used to supply the power to the unit. The unit shall use independent power supply, and it is strictly forbidden to share the same power supply with other electrical appliances to avoid the danger of overload. The fuse or manual switch of the power supply shall match the working voltage and current of the unit. If multiple modules are connected in parallel, the wiring connection mode and configuration parameter requirements of the unit are shown in the figure below.
- 8) Part of the interface in the electric control box is switch signal, which needs the user to provide power supply which rated voltage shall be 220 VAC. Users must pay special attention to that all the power supply provided by themselves must be obtained through the power circuit breaker (provided by the user) to ensure that when the circuit breaker is disconnected, all the voltage on the nodes of the power circuit provided will be removed.
- 9) All inductive elements (coils for contactors, relay, etc.) provided by users themselves must be suppressed by standard resistance capacitance suppressors to avoid electromagnetic interference which might cause the fault or even damage of the unit and its controller.
- 10) All the weak current wires connected to the electric control box must be shielded, and the shielding layer must be installed with grounding wire. The shielding wire shall be separated from the power line to avoid electromagnetic interference.
- 11) The unit must be installed with grounding wire. Do not connect the grounding wire with gas fuel pipe, water pipe, lightning conductor or telephone grounding wire. Improper grounding may cause electric shock accident. Please check the grounding of the unit regularly

Attention

Maximum 32 units can be connected for 35 kW, 75 kW and 155 kW units,

IV. Wiring procedures

- 1) Check and ensure that the unit is correctly connected with the grounding wire to prevent leakage accident. The grounding device shall be constructed in strict accordance with the requirements of electrical regulations. The grounding wire can prevent electric shock.
- 2) Install the main power switch control box in proper position.

- 3) Install wire rubber pad on the main power wiring hole.
- 4) Connect the main power supply, power supply neutral wire and grounding wire to the electric control box of the unit through the wire connection hole.
- 5) The main power cord must pass through the clamp.
- 6) Firmly connect the wires to the terminals L1, L2, L3 and N.
- 7) It is required that the phase sequence must be consistent for the connection of main power line.
- 8) The main power supply shall be selected in the position that is not easy to be touched by non special maintenance personnel to avoid misoperation and improve the safety of use.
- 9) Connection of water pump control line: the control line of water pump AC contactor is connected to the terminal block of No.0 host, which must be controlled by the host, otherwise it may cause serious damage to the unit.
- 10) Connection of remote switch control line: disconnect the short circuit of the remote switch and connect it to the required control switch terminal (if the remote switch is connected, the switch and the controller by wire jointly control the start of the unit).

V. Wiring diagram

2)

- 1) Figure (i): CAM-E350C-3F wiring nameplate;
 - wiring nameplate;
- 3) Figure (iii): CAM-E1550C-3F wiring nameplate;

Figure (ii): CAM-E750C-3F

Attention

1) Fault

When the host fails, stop the host and all other units will stop running;

When the slave fails, only this unit will be stopped, and other units will not be affected.

2) Protection

When the host is protected, only the host itself will be stopped, and other units will keep running; When the slave is protected, only this unit will be stopped, and other units will not be affected.

Test Running

I. Matters needing attention before test running

- 1) After the water system pipeline is washed and discharged for many times, it shall confirm that the water cleanliness meets the requirements. After the system is filled with water again and emptied, start the water pump to confirm that the water flow and outlet pressure meet the requirements.
- 2) Connect the main power supply 12 hours before the start of the unit to power on the heating belt and to preheat the compressor. If it is not heated enough, the compressor may be damaged.
- 3) Setting of the wire controller For details, please refer to the contents of this Manual about the setting of the wire controller, and basic settings such as cooling mode, heating mode and automatic adjustment mode. In general, during the test running, all kinds of parameters shall be set near the standard working conditions, and shall not be set at the extreme working conditions of the unit as far as possible.
- 4) Carefully adjust the inlet stop valve of the water system unit to make the water flow of the system is 100% complying with that required in the *Table of Technical Parameters*.

II. Inspection list after installation

According to all drawings and data, refer to the following table to inspect the installation work

Items for inspection	Specific description	Yes	No
	The unit is firmly installed on the foundation and leveled		
	The air flow space of air side heat exchanger shall meet the requirements		
Does the installation position meet the	The maintenance workspace shall meet the requirements		
requirements	The noise and vibration shall meet the requirements		
	Direct sunlight, rain and snow protection shall meet the requirements		
	The appearance shall meet the requirements		
	Installation dimensions shall meet the requirements		
	The length of the system shall meet the requirements		
	The drainage shall meet the requirements		
Does the water system meet the requirements	Water quality control shall meet the requirements		
	The hose connection shall meet the requirements		
	The pressure control shall meet the requirements		
	Thermal insulation shall meet the requirements		
	The wire capacity shall meet the requirements		
	The switching capacity shall meet the requirements		
	The fuse capacity shall meet the requirements		
Does the electrical	The voltage and frequency shall meet the requirements		
the requirements	Fastening of connection position		
	The operation of control device shall meet the requirements		
	The safety device shall meet the requirements		
	The interlock control shall meet the requirements		

Inspection list of installation work

	The power supply phase sequence wiring shall meet the requirements		
--	--	--	--

III. Test running

- 1) Turn on the controller and check whether the unit has fault code display. If there is any fault, eliminate the fault first. After confirming that the unit is free of fault, and then start the unit according to the operation method in "Unit Control Instructions".
- 2) The test running shall last for 30 minutes. When the inlet and outlet water temperature is stable, adjust the water flow to the nominal value to ensure the normal operation of the unit.
- 3) After shutdown, put the unit into operation at an interval of 10 minutes to avoid frequent startup of the unit. Check whether the unit meets the requirements according to the table of *Technical Parameters*.

Attention

- Because the unit can start and stop the water pump, it is not allowed to control the operation of the water pump through the unit when the water system is being flushed.
- Do not start the unit before the water system is fully drained.
- In case of water shortage alarm during the test running of the unit, the interface of target flow switch shall not be short circuited. Whether the water pump type is too small or the pipeline design is reasonable shall be considered. Otherwise, the user shall be responsible for the fault caused by water cut-off during the operation of the unit.
- During the test running, the unit shall not be started up manually again after shutdown for less than 10 minutes.
- In the season of frequent operation, do not cut off the power supply after the unit stops running. Otherwise, the compressor will not be heated, which may cause damage to the compressor.
- If the power supply needs to be cut off due to long-term shutdown of the unit, remember to power on the unit 12 hours before restart to preheat the compressor.

Care and Maintenance

I. Control and protection function of the unit

1. The unit has the following control and protection functions:

- 1) Protection of insufficient flow in water circulation system
- 2) Power phase sequence protection
- 3) Protection for the suction pressure too low
- 4) Protection of exhaust temperature too high
- 5) Protection of overload of compressor motor
- 6) Anti-freezing protection (double protection of low shell and tube water temperature and low shell and tube inlet and outlet water temperature)
- 7) Protection for discharge temperature too high
- 8) Protection for condenser temperature too high under cooling working condition
- 9) Protection of evaporation pressure too low
- 10) Protection for fan overload

II Fault analysis and troubleshooting

Fault	Possible causes	Detection and troubleshooting methods
	There is air or other non-condensable gas in the system	Remove the air from the fluorine injection nozzle and vacuum it again if necessary
	The condenser fins are dirty or it is blocked by foreign matters	Clean the condenser fins
Discharge pressure is too high	Insufficient condensing air flow volume or condensing fan fault	Repair the condensing fan and resume the operation
(cooling operation)	Suction pressure is too high	Please refer to "sunction pressure too high"
	The charging of refrigerant is too much	Remove excess refrigerant
	The ambient temperature is too high	Check the ambient temperature
Discharge pressure	Air subcooling on the side of air heat exchanger	Check the ambient temperature
too low (cooling operation)	Refrigerant leakage or insufficient charging	Detect the leakage or fill sufficient refrigerant
	Suction pressure is too low	Please refer to "suction pressure is too low"
Suction pressure is	The charging of refrigerant is too much	Remove excess refrigerant
operation)	The inlet temperature of chilled water is too high	Check the pipe insulation and pipe insulation specification
	Insufficient water flow	Check the temperature difference between inlet and outlet and adjust the water flow
Suction pressure too low (cooling	The inlet temperature of chilled water is too low	Check the installation conditions
operation)	Refrigerant leakage or insufficient charging	Detect the leakage or fill sufficient refrigerant
	The evaporator has scale	Clean the scale
Discharge pressure is too high (heating	Insufficient water flow	Check the temperature difference between inlet and outlet and adjust the water flow

operation)	There is air or other non-condensable gas in the system	Remove the air from the fluorine injection nozzle and vacuum it again if necessary
	The water side heat exchanger has scale	Clean the scale
	The outlet temperature of cooling water is too high	Check the water temperature
	Suction pressure is too high	Please refer to "suction pressure is too high"
D : 1	Outlet water temperature is too low	Check the cooling water temperature
Discharge pressure is too low (heating operation)	Refrigerant leakage or insufficient charging	Detect the leakage or fill sufficient refrigerant
operation)	Suction pressure is too low	Please refer to "suction pressure is too low"

(cont'd)

Fault	Possible causes	Detection and troubleshooting methods
Suction pressure is	The inlet air temperature of air side heat exchanger is high	Check the ambient temperature
operation)	The charging of refrigerant is too much	Remove excess refrigerant
Suction pressure is	Insufficient refrigerant	Charge enough refrigerant
too low (heating	Insufficient air volume	Check the fan steering
operation)	Short aire circuit	Eliminate the cause of air short circuit
Compressor	Insufficient defrosting operation	Four-way reversing valve or thermistor fault, and replace if necessary
shutdown due to antifreeze	Insufficient chilled water flow	Fault of water pump or target flow controller, please check ore replace
operation)	There is gas in the water circuit	Exhaust the air
	Thermistor fault	If the fault is confirmed, replace it
Compressor	Discharge pressure is too high	Please refer to "discharge pressure is too high"
shutdown due to high pressure protection	High pressure switch fault	Check if there is any problem, repair or replace it
Compressor	Discharge and suction pressure is too high High or low voltage, single phase or phase imbalance	Please refer to "discharge pressure is too high" and "suction pressure is too low" to check that the voltage shall not exceed or be lower than 20 V of the rated voltage
overload of motor	Short circuit of motor or wiring terminal	Check the corresponding resistance of motor and terminal
	Overload assembly fault	Replace them
Compressor shutdown due to	Voltage is too high or too low	The voltage shall not exceed or lower than 20 V of the rated voltage
built-in temperature sensor or discharge temperature protection	Discharge pressure is too high or suction pressure is too low	Please refer to "discharge pressure is too high" and "suction pressure is too low"
	Components fault	Check the built-in temperature sensor when the motor is cooled down
Compressor	The filter before (or after) the expansion valve is blocked	Replace the filter
shutdown due to low pressure protection	Low pressure switch fault	Replace it if there is any defect
	Suction pressure is too low	Please refer to "suction pressure is too low"

Abnormal noise of compressor	Liquid slugging caused when liquid refrigerant from the evaporator entering the compressor	Adjust refrigerant charging
	Aging of compressor	Replace the compressor
	The over-current relay is tripped and the fuse is burnt out	Replace the damaged assembly
	The control circuit is not connected	Check the control system wiring
	High or low pressure protection	Please refer to the suction and discharge pressure fault section above
The compressor can	Contactor coil burnt	Replace the damaged assembly
not be started	Power supply phase sequence connection error	Reconnect and adjust any two of the three phases
	Water system fault and target flow controller is disconnected	Check the water system
	There is a fault signal in the wire controller	Find out the fault category and take corresponding measures
	Four-way reversing valve or thermistor fault	Check operation and replace if necessary
Excessive frosting of air side heat	Short aire circuit	Eliminate the cause of air short circuit
exchanger	Improper placement of T4 ambient temperature probe	The probe is placed at a position where the ambient temperature can be correctly perceived
Noise	The fastening screws of the panel are loose	Fasten all parts

III. Fault and cause of wire controller

If the unit is operating under abnormal condition, the fault protection code will be displayed on the wire controller, and the indicator light on the wire controller will flash at the frequency of 1 Hz. The display code is as follows:

Unit fault code:

	Unit fault			
Code	Definition of the fault	Description		
E0	Power fault (incorrect three-phase electrical input)	Each unit		
E1	Air conditioning water pump overload	Host		
E2	Insufficient water flow of air conditioning water pump	Each unit		
E3	(reserved)	/		
E4	(reserved)	/		
E5	Total return water temperature sensor TB fault	Host		
E6	Total return water temperature sensor T1 fault	Host		
E7	Outdoor environment temperature sensor T4 fault	Host		
E8	Water outlet temperature sensor T2 fault of shell and tube heat exchanger unit	Each unit		
E9	System A condenser outlet temperature sensor T3A fault	Each unit		
EA	System B condenser outlet temperature sensor T3B fault	Each unit		
Eb	Anti-icing temperature sensor TC fault of shell and tube heat exchanger	Each unit		
EC	(reserved)	/		

Ed	(reserved)	/
EE	System A evaporator inlet temperature T5A sensor fault	Each unit
EF	System B evaporator inlet temperature T5B sensor fault	Each unit
LO	EEPROM fault	Each unit
L1	Communication fault between modules	Slave
L2	The number of modules decreased	Host
L3	Address error	Host
L4	Communication fault between wire controller and main board	Host
L5	On board chip communication fault	Each unit

Protection code of the unit:

	Unit protection	
Code	Definition of protection	Description
PO	System A low pressure protection	Each unit
P1	System A compressor module protection	Each unit
P2	System A high pressure protection or discharge temperature protection	Each unit
P3	Compressor A current too high protection	Each unit
P4	System A condenser high temperature protection	Each unit
P5	System A fan overload protection	Each unit
P6	System B low pressure protection	Each unit
P7	System B compressor module protection	Each unit
P8	System B high pressure protection or discharge air temperature protection	Each unit
P9	Protection for compressor B current too high	Each unit
PA	System B condenser high temperature protection	Each unit
Pb	System B fan overload protection	Each unit
PC	Outlet water temperature of shell and tube heat exchanger unit is too high/ too low	Each unit
Pd	The inlet and outlet water temperature difference of shell and tube heat exchanger is too large, and alarm will be sent when the difference between T2 and TB is greater than or equal to 10°C	Each unit
PE	Protection for anti-icing temperature too low	Each unit
PF	Other faults	Each unit

Cont'd

Code	Definition of protection	Description
F0	System A return air temperature THA sensor fault	Each unit
F1	System B return air temperature THB sensor fault	Each unit
F2	System A injection bypass inlet temperature T6A sensor fault	Each unit
F3	System A injection bypass inlet temperature T6B sensor fault	Each unit
F4	System A injection bypass outlet temperature T7A sensor fault	Each unit
F5	System B injection bypass outlet temperature T6B sensor fault	Each unit
F6	Protection for system A discharge sensor temperature too high	Each unit
F7	Protection for system B discharge sensor temperature too high	Each unit

IV. Care and maintenance

1. Maintenance of main components

- In the process of operation, close attention shall be paid to the discharge and suction pressure of the system. If any abnormality is found, the cause shall be found in time to eliminate the fault.
- Control and protect the equipment. Do not adjust the setting point at will on site.
- Regularly check whether the electrical wiring is loose, whether the contact point is oxidized, and whether there are impurities causing poor contact, and if so, please deal with it in time. Always pay attention to the working voltage, current and phase balance.
- Timely check the reliability of electrical components, and timely replace the failed and unreliable components.

2. Remove the scale

After long-term operation, calcium oxide or other minerals will deposit on the heat transfer surface of the water side heat exchanger. When there is more scaling on the heat transfer surface, these substances will affect the heat transfer performance, resulting in increased power consumption and too high discharge pressure (or too low suction pressure). It can be cleaned with formic acid, citric acid, acetic acid and other organic acids. Never use cleaning agent containing chloric acid or fluoride, because the material of water side heat exchanger is stainless steel, which is easy to be corroded to result in refrigerant leakage. Pay attention to the following aspects in the process of cleaning and descaling:

- The cleaning of water side heat exchanger must be carried out by professionals. Otherwise, serious damage might be caused to the heat exchanger!
- After using the cleaning agent, clean the water pipe and heat exchanger with fresh water, and carry out water treatment to prevent the system from corrosion or re-adsorption of scale after cleaning.
- When cleaning agent is used, the concentration, cleaning time and temperature of cleaning agent shall be adjusted according to the condition of dirt deposition.
- After the completion of pickling cleaning, the waste liquid needs to be neutralized, and the relevant company for waste liquid treatment shall be contacted for the waste liquid.
- Cleaning agents and neutralizing agents have corrosive effects on eyes, skin, nasal mucosa, etc., so protection devices (such as goggles, protective gloves, protective mask, protective shoes, etc.) must be used in the cleaning process to prevent inhalation or contact with agents.

3. Shutdown in winter

When the unit is shut down in winter, the internal and external surfaces of the unit shall be cleaned and dried; in order to prevent dust, please cover the unit; open the drain valve to drain the water in the water system to prevent freezing accident (it is better to fill the water pipe with antifreeze). In order to prevent the pipeline from being damaged by freezing, do not cut off the power supply of the unit for short time shutdown in winter

4. Parts replacement

The replacement parts shall be the accessories provided by our company. Do not replace any different parts at will.

5. Initial start after shutdown

After any long-term shutdown, the following preparations shall be made when the unit starts up again:

- 1) Inspect and clean the unit thoroughly.
- 2) Clean the water piping system.
- 3) Check water pump, regulating valve and other equipment of water pipe system.
- 4) Tighten all wire connections.
- 5) Supply the power for 12 hours before start up.

6. Refrigeration system

Check the value of suction and discharge pressure to determine whether it is necessary to inject refrigerant and conduct leakage detection. If there is leakage or the components in the refrigeration cycle system are replaced, air tightness inspection shall be conducted. The following two situations shall be treated differently while filling the refrigerant.

1) Complete leakage of refrigerant. In this case, the leakage of high pressure nitrogen used in the system must be detected. If repair welding is needed, the gas in the system must be exhausted before welding. Before filling the refrigerant, the whole refrigeration system must be thoroughly dried and vacuumed.

- The fluorine injection nozzle on the low pressure side shall be connected with the vacuum pipe.
- Use the vacuum pump to vacuum the system pipeline for more than 3 hours, and confirm that the pressure indicated by the multimeter is within the specified range.
- After reaching the required vacuum, fill the refrigeration system with refrigerant bottle. The appropriate refrigerant filling amount is indicated on the nameplate and in the table of main technical parameters. Refrigerant must be charged from the low pressure pipe side of the system.
- The charge of refrigerant will be affected by the ambient temperature. If the required charge is not satisfied and it is unable to be charged again, the chilled water can be recycled and the unit can be started for charging. If necessary, the low-pressure control switch can be short circuited temporarily.

2) Supplement the refrigerants Connect the refrigerant filling bottle to the fluorine filling nozzle on the low pressure side, and connect the pressure gauge on the low pressure side.

• Circulate the chilled water, start the unit, and short circuit the low pressure control switch if necessary

by charge the system with refrigerant and check the suction and discharge pressure.

Attention

- The wiring must be restored after charging.
- During the leakage detection and air tightness test, never charge the refrigeration system with oxygen, acetylene or other flammable or toxic gases but only high-pressure nitrogen or refrigerant.

7. Disassemble the compressor

If the compressor needs to be disassembled, please follow the following steps:

- 1) Turn off the power supply of the unit.
- 2) Remove the compressor power cable.
- 3) Remove the suction and discharge pipes of the compressor.
- 4) Remove the compressor fixing bolts.
- 5) Remove the compressor.

8. Auxiliary electric heater

When the ambient temperature is below 0°C, the heating efficiency decreases with the decrease of outdoor air temperature. In order to stabilize the heating operation of air-cooled heat pump units in cold regions and supplement part of the heat lost due to defrosting, when the minimum ambient temperature of the user's region in winter is 0°C to-10°C, the auxiliary electric heater will be an option. Please consult relevant professionals for the power of the auxiliary electric heater.

9. System anti-freezing

If the flow passage of the water side heat exchanger is frozen due to not following the instructions, it will cause serious damage, that is, the heat exchanger will leak due to crack This frost crack is not in

the scope of warranty, so special attention shall be paid to anti-freezing.

- 1) When the unit is shut down for standby under low ambient temperature, and if the unit is placed outdoor environment with the temperature lower than $2\mathbb{C}$, the water system shall be drained.
- 2) During operation, if the chilled water target flow controller and antifreeze temperature sensor fail, the water pipe may freeze. Therefore, the target flow controller must be connected according to the wiring diagram.
- 3) During maintenance. When the unit is charged with refrigerant or discharged for maintenance, the water side heat exchanger may be cracked as a result of freezing. Whenever the pressure of refrigerant in R410A system is below 0.7MPa, pipeline icing may occur.

Therefore, when the system releases the refrigerant, the water in the heat exchanger must be kept flowing or completely drained.

Model			35 kW(EVI)	155 kW(EVI)				
Nominal heating capacity		kW	24	50	100			
Nominal heating power		kW	9.8	20	43			
Nominal heating current		А	18	37	74			
Rated heatin capacity	ıg	kW	36	36 77				
Power consumption heating	for	kW	10.3	22.6	39.52			
Rated heatin current	ıg	А	19	40	82			
Rated refrigera capacity	ting	kW	30	60	138			
Cooling power consumption		kW	9.5	20.7	43.1			
Rated cooling current		А	18	38	78			
Pov	wer S	Supply		342-415 V 3 N-50 Hz	Z			
Oper	Operation control			High and low pressure switch, anti-freezing protection device, target flow controller, overload protection devices, power phase sequence protection device, etc				
Safety device			Controlled by the wire controller. It can start the machine manually and automatically, display the running status and give an alarm for the fault.					
Deficement		Туре	R410A					
Keirigerant	Cł	narge volume kg	7.5	6.5*2	12*2			
	W	ater flow (m^3/h)	6.20	13,2	26,6			
Water pipe system	Wa	ter resistance loss kPa	30 30		69			
	V	Vater side heat exchanger	Shell and tube type heat exchanger					

Technical Parameters

	Maximum working pressure Mpa	1.0					
	Inlet and outlet pipe diameter $1^{1}/_{2}$ "DN65		DN65				
Air side heat	Туре	Fin coil type					
exchanger	Air flow m ³ h	12,000	24,000	48,000			
a 11	Length mm	1,160	2,000	2,200			
Outline	Width mm	900	900	1,100			
unitension	Height mm	1,920	1,920	2,280			
Net weight	Kg	320	610	1,010			
Operating weight	Kg	370	640	1,110			
Package dimension	Length×width×height mm	1,240×950×2,060	2,080×950×2,060	2,280×1140×2,42 0			

Note:

- 1. The above data are measured under the nominal conditions of GB/T 25127.1-2010 and GB/T 25127.2-2010.
- 2. Rated working condition: water flow rate 0.172 m³ (H·kW), chilled water outlet temperature 7°C and ambient temperature $35^{\circ}C_{\circ}$
- 3. Rated heating mode: water flow 0.172m³ (H·kW), hot water outlet temperature 45°C and ambient temperature DB7°C/WB6°C.
- 4. Heating mode under nominal working condition: the water flow is according to the rated cooling flow, and the outlet water temperature is 41°C and ambient temperature is-12/-14°C.

	•	1	• 4	1
l est	running	and	maintenance	records
LOC	1 uning	unu	mannee	i ccoi us

Model:	Code on unit body:
User name and address:	Date:
1. If there is enough water flow through the water side heat exchanger?	()
2. If all water pipes are checked for leakage?	()
3. If water pumps, fans and motors are lubricated?	()
4. If the unit is operated for 30 minutes?	()
5. Check the temperature of chilled water or hot water:	
Inlet () Outlet ())
6. Check the air temperature of air side heat exchanger:	
Inlet () Outlet ()
7. Check the refrigerant suction temperature and superheat temperature:	
Regrigerant suction temperature: () () () () () ()
Superheat temperature: () () () () () ()
8. Check the pressure:	
Discharge pressure: () () () () () ()	
Suction pressure: () () () () ()	
9. Check the operating current: () () () () ()	
10. If the unit has been checked for refrigerant leakage?	()
11. If the unit is cleaned?	()
12. Check if the main power wiring is correct?	()

Daily operation record

Model:								
Date:								
Weather:								
Operation time	startup ()	stop) ()			
Outdoor	Dry ball	°C						
temperature	Wet ball	°C						
Indoor	temperature	°C						
	High pressure	MPa						
Compressor	Low pressure	MPa						
Compressor	Voltage	V						
	Current	А						
Air	Inlet (dry ball)	°C						
temperature of air side heat exchanger	Outlet (dry ball)	°C						
Chilled or hot	Inlet	°C						
water temperature	Outlet	°C						
Cooling water pun	°C							
Remarks:								

Annex:

Parts Purchased from Local Source

Name	Shock absorber	Double core sheathed communication line	Flange plate				
Shape	-	-	DN40 flange plate	DN100 flange plate	DN65 flange plate		
Remarks	The installation hole of the steel frame of the unit base is Φ 15 mm	The double core sheathed communication line with grounding wire shall be used, and the inner core specification shall be $2 \times 0.56 \text{ mm}^2$ which is in accordance with 3C certification. The length of communication line shall be determined according to the site conditions, and the maximum length shall be $\leq 1000 \text{m}$.	Specification of flange plate shall refer to the above figure	Specification of flange plate shall refer to the above figure	Specification of flange plate shall refer to the above figure		

Figure (II) 75 kW module unit wiring nameplate

Figure (III) Wiring nameplate of 155 kW module unit

Notes:

- 1. The maximum number of modules of the unit is $n \le 32$;
- The communication line is twisted pair $2x(0.75-1.0)mm^2$ Shielded wire P,Q,E ("E" is the shield connect) сi
- 3. Select the unit type through the main board dial switch

(When the unit is far away from the wired controller, 120 matching resistor may be connected with P and Q at the side of main board in parallel.) (The max length 50m)

Name and content of hazardous substances in the product								
	Hazardous Substances							
Part Name	Lead (Pb)	Mercury (Hg)	Cadmium (Cd)	Hexavalent chromium (Cr(VI))	Polybrominated biphenyls (PBB)	Polybrominated diphenyl ethers (PBDE)		
Compressor and accessories	×	0	×	0	0	0		
Heat exchanger	0	0	0	0	0	0		
Pipe fittings and valves	×	0	0	0	О	О		
Refrigerant	Ο	Ο	Ο	0	0	0		
Motor	×	0	×	0	0	0		
Control box and electrical components	×	0	×	0	0	0		
Power cord and connecting wire	×	0	0	0	0	0		
Fasteners such as screws, bolts, etc.	×	0	0	0	0	0		
Rubber parts	0	0	0	0	0	0		
Other metal parts	Ο	0	0	0	0	0		
Other plastic parts	0	0	О	0	0	0		
Printed parts	0	0	0	0	0	0		
Foam parts	0	Ο	0	0	0	0		
Insulation cotton	Ο	0	0	Ο	0	0		

Appendix: name and content of harmful substances in products

The table is prepared in accordance with SJ/T 11364.

O: It indicates that the content of the hazardous substance in all homogeneous materials of this part is below the limit specified by GB/T 26572.

×: Indicates that the content of the hazardous substance in at least one homogeneous material of the part exceeds the limit specified in GB/T26572; however, with the existing technical conditions, it is impossible to realize free of above harmful substances in the product parts. With the progress of alternative technology, the content of harmful substances will be gradually reduced.

To protect the environment and human health:

1. The packaging of this product can be recycled; after the product is scrapped, please separate it from domestic waste, and consumers have the responsibility to send it to a qualified recycling point;

- 2. The recycling center will recycle the materials in the reused product through appropriate methods.
- 3. For more information about recycling this product, please consult your local government, waste scrap center, or dealer.

GC-SA-HCHN01-2 802000101050